Keep Your Money

Stack of Money

Conservation Strategies for Compressed Air Systems

Identify easy to implement energy conservation opportunities in your compressed air system by conducting a walk-through assessment. Simple conservation opportunities can result in savings up to 25% of the current cost to run the compressed air system.

Leaks

Routinely check your system for leaks. A distribution system under 100 pounds-per-square-inch gauged (psig) of pressure, running 40 hours per week, with the equivalent of a quarter-inch diameter leak will lose compressed air at a rate of over 100 cfm costing over $2,800 per year. In noisy environments an ultrasonic detector may be needed to locate leaks.

Compressor pressure

The compressor must produce air at a pressure high enough to overcome pressure losses in the supply system and still meet the minimum operating pressure of the end use equipment. Pressure loss in a properly designed system will be less than 10% of the compressor’s discharge pressure found on a gage on the outlet of the compressor. If pressure loss is greater than 10%, evaluate your distribution system and identify areas causing excessive pressure drops. Every two PSI decrease in compressor pressure will reduce your operating costs 1.5%.

Identify artificial demands

Artificial demand is created when an end use is supplied air pressure higher than required for the application. If an application requires 50 psi but is supplied 90 psi, excess compressed air is used. Use pressure regulators at the end use to minimize artificial demand.

Inappropriate use of compressed air

Look for inappropriate uses of compressed air at your facility. Instead of using compressed air, use air conditioning or fans to cool electrical cabinets; use blowers to agitate, aspirate, cool, mix, and inflate packaging; and use low-pressure air for blow guns and air lances. Disconnect the compressed air source from unused equipment.

Heat recovery

As much as 80 to 90% of the electrical energy used by an air compressor is converted to heat. A properly designed heat recovery unit can recover 50 to 90% of this heat for heating air or water. Approximately 50,000 British thermal units (BTUs) per hour is available per 100 cfm of compressor capacity when running at full load. For example, consider a 100 hp compressor that generates 350 cfm at full load for 75% of the year. If 50% of heat loss is recovered to heat process water, the savings, at $0.50 per therm, would be about $4,100 per year in natural gas.

Inlet air filters

Maintain inlet air filters to prevent dirt from causing pressure drops by restricting the flow of air to the compressor. Retrofit the compressor with large-area air intake filters to help reduce pressure drop.

Compressor size

If your compressor is oversized add a smaller compressor and sequence-controls to make its operation more efficient when partially loaded. Sequence-controls can regulate a number of compressors to match compressed air needs, as they vary throughout the day.

Air receiver/surge tank

If your compressed air system does not have an air receiver tank, add one to buffer short-term demand changes and reduce on/off cycling of the compressor. The tank is sized to the power of the compressor. For example, a 50 hp air compressor needs approximately a 50-gallon air receiver tank.

Cooler intake air

When ingesting cooler air, which is more dense, compressors use less energy to produce the required pressure. For example, if 90 degree F intake air is tempered with cooler air from another source to 70 degree F, the 20 degree F temperature drop will lower operating costs by almost 3.8%.

V-belts

Routinely check the compressor’s v-belts for proper tightness. Loose belts slip more frequently which reduces compressor efficiency.

An air audit performed by a professional auditing company can find tremendous savings in your compressed air system.  Consider an audit as an investment for your companies future.

Get in Touch

Natural Gas Cost Vs Electricity

I recently received a phone call from a client asking for some preliminary pricing on a centrifugal compressor that was driven with a natural gas engine.  I’ll have to admit, in my years in the compressed air field I had never had this request but I’m always willing to seek out new idea’s.

Contacting my regional engineer for some guidance, I found this is more common than I knew and the factory could accommodate the request for budget pricing.

Siemens-Gas turbine

My clients goal with this project is to meet a corporate mandate that electrical consumption be reduced by 25% over the next several years.  His thought was the cost of natural gas could potentially be lower than their cost for electricity or at least near the same.  By utilizing natural gas the reduction in electrical consumption could be met.  I know over the past few years that many of my power generation clients are moving to mothball coal fired gas plants and they are being replace by natural gas fired plants.  Although their direction is being pushed much harder by EPA emission mandates than by fuel cost.

Further researching this type of driver, I found it is much more common in the oil & gas industry than in other area’s of manufacturing.  While researching the idea I also found an article written by our friends over at Bechtel Engineering and thought there might be some interest from our readers to look into this further as well.

You can read the overview and download the whitepaper at the following link: http://bit.ly/1RwSjy4

I’ll keep you posted on my clients project and let you know how this progresses and also the determination of how this change would actually pay off in the end from both a reduction of carbon footprint along with overall fuel cost.

Get in Touch

The Power Company Loves You

With a powerhouse full of compressors, your power company wakes up looking like the little boy pictured below;  just thinking of the money it will make from you today.

Greedy Boy with dollar sign eyes

How much does it cost to run those air compressors?

Compressed air is one of the most expensive uses of energy in a manufacturing plant. About eight horsepower of electricity is used to generate one horsepower of compressed air. Calculating the cost of compressed air can help you justify improvements for energy efficiency.

Cost per year To find the annual cost of electricity used to power a compressed air system, calculate the cost for running the system under loaded and unloaded conditions. For each, multiply:

horsepower (hp)

conversion factor 0.746 kW/hp

total operating hours per year (hr/yr)

cost per kilowatt-hour ($/kWh)

% time fully-loaded or unloaded

% full-load hp, loaded or unloaded

Divide the product by the motor’s efficiency.

Use the formula below for your calculations.

Get in Touch

Turn It Off

TA-3000

Those big air compressors in the back that nobody wants to look at consume a huge amount of energy. A 100 horsepower compressor can cost $75,000 per year in energy costs (based on 8,760 hours at $0.10 per kilowatt hour). Utilizing automation, storage and flow control, system balancing and best use practices along with other details,  can allow you to turn some compressors off. Just running the above mentioned 100 HP compressor during lunch each day can cost up to $3,000.00 annually.

 

An Air Audit today could save thousands next year!

 

 

 

Get in Touch

Saving Energy On Compressed Air Does More Than Save Money

smoggy city

Approximately 70% of all manufacturers have a compressed air system. These systems power a variety of equipment, including machine tools, material handling and separation equipment, and spray painting equipment. Energy audits conducted by the U.S. Department of Energy (DOE) suggest that over 50% of compressed air systems at small to medium sized industrial facilities have low-cost energy conservation opportunities.

Significant air emissions are released when electricity is produced. A recent study for the state of Minnesota, indicated that one-fourth of the energy-related emissions of carbon dioxide, sulfur dioxide, lead and mercury are from generating electric power. Industry uses over 34% of this electricity. Reducing electricity used by compressed air systems will help improve everyone’s air quality.

A team of qualified auditing engineers is the correct way to evaluate your system.

Contact me today to schedule a consultation.

 

Get in Touch

UTILIZE COOLER INTAKE AIR

                                                           Outdoor Compressor Intake Housing

 

When it comes to intake air for your compressor, cooler outdoor air is better than hot indoor air. Denser air requires less energy to compress. Though most compressors are located inside a plant building, many times the suction could easily be ducted to draw air from outside the building. Outside air will generally be cooler and, in some cases, much cooler than ambient air near the compressor. According to some estimates, lowering the intake air temperature from 90F to 70F will lower operating costs by almost 3.8%.

 

Get in Touch Button