Does the C-Suite Have Room For One More?

 Executive Thinking Powerlines

 

For over a decade I’ve been focusing on client education related to the true cost of compressed air.  We’re all making progress but there are still those that fight the price tag on energy efficient systems.  Instead, choosing the low initial investment route when the overall cost of ownership is primarily dictated by energy cost.

A recent article in the Harvard Business Review shared information about how much utility waste actually occurs in manufacturing.  I felt the article had such impact that I’m choosing to take this weeks #TipTuesday post and simply direct you to read their article.

Considering that compressed air consumes a major portion of the utility budget there will always be savings opportunities related to the compressed air system.  I’m always available to assist you in your search for a more energy efficient system.

I hope this article arms you with valuable information in your efforts to become a more energy conscience consumer while boosting your profit margin at the same time.

The full article can be viewed at http://bit.ly/1RFY1Z8

Contact me to discuss a compressed air energy audit.

 

Get in Touch

Control Your Compressed Air

 

Compressed Air Controls

Improving and maintaining compressed air system performance requires not only addressing individual components, but also analyzing both the supply and demand sides of the system and how they interact, especially during periods of peak demand. This practice is often referred to as taking a systems approach because the focus is shifted away from components to total system performance.

Latest edition controllers from both the OEM and aftermarket suppliers offer the most sophisticated algorithms for unit control and incorporate sensitive digital sensing devices which all combine to give you the most efficient and reliable control.  The better control you have of your compressor allows operators to select the lowest possible operating pressure allowing the plant to save significant money on operations and maintenance costs.  Almost all of these controllers offer remote monitoring and remote control where operators are not required to be standing by in the compressor area to monitor data points or select update operating methods.

Universal Controller 50               Bay Controls

Controls from IZ Systems offer a complete compressor control automation package capable of handling any type of compressor, dryer, cooling tower or chiller system.  Thus allowing integrated control of the entire system which further reduces the operations cost and further improves reliability.

IZ Controller

Get in Touch

Should I Use Compressed Air?

Decision Image

Decisions, Decisions! 

Last month I posted an article discussing the options of using compressed air vs. electric.  There were several questions regarding cost calculations.

As a follow up, Todays post will discuss compressed air cost calculations to determine if compressed air should be used for specific applications.

This allows you to determine if compressed air should be used in specific applications (ie. as fans or blowers), or if other electric-motor operated equipment would be more efficient.

First calculate the volume of air produced annually for a specific operation by multiplying:

horsepower (hp)

cubic feet per minute per horsepower (cfm/hp)

total operating hours per year (hr/yr)

60 minutes per hour (60 min/hr)

% time fully loaded

% full-load horsepower

Volume of air produced annually

Then calculate the cost per 1,000 cubic feet (cf) by dividing the total energy cost to operate the air compressor by the volume of air produced annually, then multiply by 1,000. Cost per year / Volume of air products * 1000 cf

Example Calculations

The following example represents a typical small job-shop manufacturer.

A facility operates a 100 hp air compressor 4,160 hours annually. It runs fully loaded, at 94.5 percent efficiency, 85 percent of the time. It runs unloaded at 25 percent of full load at 90 percent efficiency, 15 percent of the time. The electric rate is $0.06 per kWh, including energy and demand costs. The cost per year to power the air compressor will be as follows.

Fully Loaded

Unloaded

The total annual energy cost to operate the air compressor is $17,524. The following calculation shows how much it will cost to use compressed air to operate a specific end use. Assume 3.6 cfm per horsepower and that this rate applies when the compressor is fully loaded.

Volume of air produced annually Cost per 1,000cf ($17,524 / 76,377,600) * 1000 = $0.23

Over the life of a compressor, energy costs will be five to 10 times the compressor’s purchase cost. Energy savings can rapidly recover the extra capital required to purchase an energy-efficient air compressor .

A 1.17 rated horsepower air operated mixer uses 45 cfm at 80 pounds-per-square-inch (psi) and operates 40 hours per week. The cost of the compressed air to operate this motor over a year is $1,292. A comparably sized electric motor of Energy Policy Act (EPACT) efficiency, rated for hazardous locations, is around $350. The cost to operate the EPACT motor under the same conditions is less than $100 per year. Including installation, payback is under one year.

 

Get in Touch

Pressure Fluctuation

Pipe Maze

So there are locations in your compressed air system that the pressure just seems to fluctuate? With the maze of pipes, you have to consider pressure drop for certain areas. Most clients compensate for low or fluctuating pressures with a common fix: Raise the compressor output pressure. While this will usually solve the low pressure problem it rarely solves fluctuation and in addition it also increases your cost of power to produce higher pressure air. The input power for a compressor increases 1% for every 2 PSIG in pressure elevation!  So what’s a plant to do?

Pressure/Flow Controllers

Pressure/Flow Controllers (P/FC) are system pressure controls that can be used in conjunction with the individual and multiple compressors. A P/FC does not directly control a compressor and is generally not part of compressor package. A P/FC is a device that serves to separate the supply side of a compressor system from the demand side, and requires the use of storage. Controlled storage can be used to address intermittent loads, which can affect system pressure and reliability. The goal is to deliver compressed air at the lowest stable pressure to the main plant distribution system and to support transient events as much as possible with stored compressed air. In general, a highly variable demand load will require a more sophisticated control strategy to maintain stable system pressure than a consistent, steady demand load.

“Credit to the US DOE for the preceding paragraph”

Contact a compressed air professional to discuss your particular low or fluctuating pressure concerns.

Get in Touch

Can Your Air Compressor Make Phone Calls

I read an article (link below) Sunday night from “Plant Services” discussing how the IIoT is coming to compressed air.  If you’re not familiar with IIoT, it’s the industrial version of the IoT.  In case you’ve not heard of IoT, let me give you a quick explanation.  IoT stands for the “Internet of Things” and subsequently, IIoT stands for the “Industrial Internet of Things”.

Industrial-Internet-of-things

The premise of IoT is that you and your entire home can be connected with all the components and subsystems being able to communicate and interact with each other.  Basically, a Smart Home.  What drives me crazy is that the authors of these articles promote this is new.  This is NOT NEW!  My house has been automated for over 20 years.  The lighting, HVAC, security system, garage doors, home theater, whole house sound system along with others all respond to the central computer that controls it all and can be activated by buttons on my iPhone, keypads in the house or timed based controls.  It doesn’t need access to the internet, nor do I want it connected to the internet.  One less thing I have to be concerned with related to viruses and hacking.  Sure a connection to the internet could add a few features to my system but it’s not worth the worry at this point.

IoT_edited

Now on the article in “Plant Services” discussing IIoT and how its coming to compressed air equipment.  It states how compressed air equipment utilizing IIoT and connecting to the internet will be “a game changer based on the energy-saving impact”.  It further states “it will bring smarter control for better efficiency and easier compliance reporting”.  My question is: compliance to what and reporting to who?

The goal of any compressed air system in today’s world is better efficiency but you certainly do not need an internet connection for that to happen.  My vendor for central compressed air system control (IZ Systems) has been providing this capability for years.  Maybe not as long as my house has been automated but for a lot of years.  The current system doesn’t require changes to the local controls and can be tied into nearly any type or brand of compressed air equipment.  Thus making the system reliable as any failure in the central system will revert control back to the local controller.

The key to energy efficiency has nothing to do with the internet but rather with the central processor that controls the compressed air equipment while monitoring the entire compressed air system and more importantly, the proprietary algorithm that resides in the central processor.  Yes, they can use an internet connection to remotely monitor the system but this plays no part in the efficiency and in fact, many of my existing clients will not allow their equipment to access an internet connection due to the same concerns I have over my house.  Additional security concerns.  The benefits just don’t outweigh the potential headaches.

But, the article states, with the IIoT, my compressor can call the service technician if there is a potential problem.  I’m sure this would save all my clients some time however most of my clients already tie equipment monitoring into their DCS and trend various data points such as temperature, pressure and vibration.  If there is an escalating problem the DCS notifies them and they determine who needs to be called for further inspection or repair.  So in my opinion, having your air compressor make phone calls is not going to add a lot of hours to your day.

Rather than waiting and hoping the IIoT progresses to a usable point, in my opinion, your money would be better spent investing today in a solid service contract with a company that can provide true vibration analysis.  I’m not talking about trending but rather vibration analysis by professionals that know what the frequency’s should be on your equipment and can spot problems from one initial vibration analysis.

I think you can determine that I’m no luddite.  In fact, quite the opposite.  I love technology and the great things it can provide us.  I just don’t want my clients getting caught up in the wave of hype surrounding a supposed new technology and spending money on features that are either easily available today or worse, for something they don’t really need.

Perhaps as the IIoT progresses I’ll be proven wrong and this technology can truly provide value to my clients.  But for today, I see it as a half baked cookie that nobody really needs to bite into.

Here is a link to the original article if you’re interested.

Get in Touch